The Role of Natural Gas Fired Reciprocating Engines in the Distributed Energy Market – Market Forces and Opportunities

Presented by:

Ted Bronson, Associate Director Distributed Energy GTI

April 23rd, 2002

Overview

- Introduction Why Recips?
- Reciprocating Engine DE Markets
- Reciprocating Engines in Power Generation Costs
- Regulatory Issues and Initiatives
- Power Generation Emissions
- Conclusions and Recommended Actions

Introduction

- GTI Leading efforts to develop emerging DE technologies
 - Microturbines
 - Fuel Cells PEM, Solid Oxide, Molten Carbonate
 - Gas-Renewable Hybrid Systems
 - Packaged DE Systems

Introduction

- Why Recips?
 - Untapped potential of Building IES market
 - Proven and Improving
 - One of few industries large enough to force change to a competitive market
- Today's presentation
 - Focus on Characteristics of Market and its Forces
 - Discuss approaches with Regulators to open DE market

Reciprocating Engines Dominate Distributed Energy Market below 7.5 MWs

- Why do recips dominate at smaller sizes?
 - Lower installed costs
 - Several established competitors with numerous products
 - Excellent load-following characteristics
 - Versatility in operation
 - Fuel versatility
 - Fast start-up to full load operation
 - Relatively low exhaust gas emissions levels
 - Excellent operational performance at variable loads and high ambient temperatures
 - Proven Reliability at these sizes
 - Significant heat recovery potential
 - Operator familiarity and ease of maintenance
 - Well established sales and service infrastructure

Reciprocating Engine Operating Strategies

- DE Market beginning to grow
 - Stationary reciprocating engine orders up 68% from May '00 to June '01
 - Natural gas fired reciprocating engine orders up 95%
- Consumers excercising choice to better control the reliability and availability of their power
- High costs of power outages and peak power key
 - PUCs beginning to increase peak power rates (IL, TX) to lower peak on grid
 - Expect emerging rates to make on-peak DE more economically attractive in the future

- Emerging Power Generation Applications
 - Industrial CHP
 - Efficiency and environmental benefits
 - Integrated Energy Systems (BCHP)
 - "Plug and Play" applications
 - DOE's Packaged System Program
 - Energy Security
 - "A more independent and decentralized energy system, less reliant on central power plants (e.g. potential targets) and excessive T&D networks is safer and less vulnerable to disruption" — Union of Concerned Scientists
 - Metropolitan Energy Planning
 - Improved / High 9s Reliability

Supply 30% of Projected Growth

AEO 2001

Chicago Goal 6000 Million kWh

Reciprocating Engine DE Markets: High 9s Reliability

Industry Costs of Grid Failures

Industry Average Cost of Downtime

Cellular Communications \$41,000 per hour

Telephone Ticket Salesa \$72,000 per hour

Airline Reservations \$90,000 per hour

Credit Card Operations \$2,580,000 per hour

Brokerage Operations \$6,480,000 per hour

Reciprocating Engines Impact on Power Generation – Costs

- Project Total Installed Cost Economics
 - Higher for smaller units (500-1500 kws, vs >5 MWs)
 - Challenge for IES / Building Program
 - Drive to packaged systems and lower unit costs
- Factors impacting Payback
 - Operating Cost
 - Local Utility Rate structures
 - Heat Recovery
- Cost is major factor of Reciprocating Engine dominance of < 7.5 MW market (Still not competive in some applications)

Reciprocating Engines Impact on Power Generation – Costs

Reciprocating Engines Impact on Power Generation – Costs

Cost of Gas Driven Electricity Generation

Efficiency of Electricity Generator

Regulatory Issues and Initiatives

- Myths concerning DE and Reciprocating Engines:
 - DE results in increased power costs for captive grid customers
 - Message: DE only represents portion of planned growth, and will serve to increase grid utilization and moderate electicity prices
 - Too much DE may cause instability to the grid
 - Message: Recent GE study identified virtually no impact to 20%; Holland and Denmark utilizing over 40 and 50% DE.
 - DE and Recips are "dirty" technologies
 - Message: It depends on use, location and application (more later)

Regulatory Issues and Initiatives

- Existing institutional and market barriers (see DOE report Making Connections)
 - Standby Rates
 - Renegotiated Rates
 - Impact of Deregulation
 - Tariff Issues
 - Other utility issues
 - DE Emissions Standards (CA, TX, RAP)

Power Generation Emissions

EPA

Power Generation Emissions

Emissions by Generation Type (lbs/MWh)i

Generator Type	NO _x	CO ₂	SO _x
Natural Gas CCGT	0.09-3.8	770	~0
Oil (2.2 % sulfur) fueled steam electric plant	3.0-3.7	1,770	25.4
Oil (0.3 % sulfur) fueled combustion turbine	3.7-6.8	2,190	4.4
Coal- Steam Electric	6.1-9.4	1,960-2,310	46.6
Diesel Engine	17.0	1,700	5.0
Natural Gas Engine	3.2	970	0.01

ⁱ Engine Source: 2002 projections by Distributed Utility Associates for the California Air Resources Board. Other Generating Technology Source: Power Scorecard Methodology by Pace Law School Energy Project. September 22, 2000.

Power Generation Emissions

- What does DE offset?
 - Location: Type and location of plants by region
 - Time of Use: On Peak vs. Off Peak Emissions

Generation – Marginal Price

DE Improves Power Gen Emissions

Illinois Generation

New York Generation

• 7,000 - 1MW DE Plant to displace Gas & Oil > 2.5 lbs/MWh

DE Emissions Impact Summary

- DE can have a positive impact on emissions in most States (not Texas and CA)
- CCCT Represent a small portion of the electricity generation sector
- CCCT will be selected before simple cycle gas and oil
 - DE will reduce the need for increases in simple cycle gas boilers/turbines and coal fired electricity
- CCCT does not appear to be a player in markets dominated by coal and nuclear (such as the Midwest)

Conclusions and Recommended Actions

- Reciprocating Engines can serve as a bridge, or enabling technology to new DE technologies
 - Capital and infrastructure necessary to reduce barriers and drive down installed costs
- Unnecessary, overly stringent standards may eliminate reciprocating engines as a choice in some markets, resulting in several limits to the overall DE market
- Reciprocating Engine Manufacturers and DOE can work together to:
 - Further improve engines (lower costs, improved emissions)
 - Develop integrated products for specifed, emerging markets that reduce overall costs.
- Reciprocating Engine Manufactures should work to drive national and regional industry groups working to remove barriers and open up the DE market

References

- 1996 Cost of Downtime Study" by Contingency Planning Research.
- "Annual Energy Outlook 2002", Energy Information Administration, December 2001
- "Chicago's Energy Plan" by City of Chicago Department of Environment, 2001.
- "DG Power Quality, Protection and Reliability Case Studies Report". GE Corporate Research and Development, September 2001
- "Distributed Energy: The Power Paradigm for the New Millennium" by Ann-Marie Borbely and Jan Kreider, 2001
- "Energy Security Solutions to Protect America's Power Supply and Reduce Oil Dependence", Union of Concerned Scientists, January 2002
- Natural Gas Monthly, DOE/EIA-0130, November 2000
- Draft Natural Gas Petroleum Council Report, December 15, 1999
- Electric Utility Restructuring: A Guide to the Competitive Era, Peter Fox-Penner, 1998
- May 2001, and "Profits and Progress Through Distributed Resources" February 2000, David Moskovitz
- EPA, Report "National Air Pollutant Emissions Trends" March 2000
- "Making Connections: Case Studies of Interconnection Barriers and their Impact on Distributed Power Projects" by United States Department Of Energy Distributed Power Program, Revised July 2000.
- "National CHP Roadmap" by United States Combined Heat and Power Association, March 2001.
- **"Power to Choose" Distributed Energy Series by the Gas Technology Institute, February 2002.**
- Cooling, Heating, and Power for Buildings. http://www.bchp.org
- Diesel & Gas Turbine Worldwide
- Environmental Benefits of Distributed Generation; Joel Bluestein, Energy and Environmental Analysis, Inc., December 18, 2000.
- United States Environmental Protection Agency, Egrid Database, 1998.

